Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control

نویسندگان

  • Shyam Diwakar
  • Paola Lombardo
  • Sergio Solinas
  • Giovanni Naldi
  • Egidio D'Angelo
چکیده

Local field-potentials (LFPs) are generated by neuronal ensembles and contain information about the activity of single neurons. Here, the LFPs of the cerebellar granular layer and their changes during long-term synaptic plasticity (LTP and LTD) were recorded in response to punctate facial stimulation in the rat in vivo. The LFP comprised a trigeminal (T) and a cortical (C) wave. T and C, which derived from independent granule cell clusters, co-varied during LTP and LTD. To extract information about the underlying cellular activities, the LFP was reconstructed using a repetitive convolution (ReConv) of the extracellular potential generated by a detailed multicompartmental model of the granule cell. The mossy fiber input patterns were determined using a Blind Source Separation (BSS) algorithm. The major component of the LFP was generated by the granule cell spike Na(+) current, which caused a powerful sink in the axon initial segment with the source located in the soma and dendrites. Reproducing the LFP changes observed during LTP and LTD required modifications in both release probability and intrinsic excitability at the mossy fiber-granule cells relay. Synaptic plasticity and Golgi cell feed-forward inhibition proved critical for controlling the percentage of active granule cells, which was 11% in standard conditions but ranged from 3% during LTD to 21% during LTP and raised over 50% when inhibition was reduced. The emerging picture is that of independent (but neighboring) trigeminal and cortical channels, in which synaptic plasticity and feed-forward inhibition effectively regulate the number of discharging granule cells and emitted spikes generating "dense" activity clusters in the cerebellar granular layer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage

The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plastic...

متن کامل

Tactile stimulation evokes long-term synaptic plasticity in the granular layer of cerebellum.

Several forms of long-term synaptic plasticity [long-term potentiation (LTP) and long-term depression (LTD)] have been reported in the cerebellar circuit in vitro, but their determination in vivo was still lacking in most cases. Here we show that, in the urethane-anesthetized rat, appropriate patterns of facial tactile stimulation as well as intracerebellar electrical stimulation can induce LTP...

متن کامل

Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit

The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar ...

متن کامل

Realistic Modeling of Large-Scale Networks: Spatio-temporal Dynamics and Long-Term Synaptic Plasticity in the Cerebellum

A large-scale computational model of the cerebellum granular layer has been adapted to generate long-term synaptic plasticity in response to afferent mossy fiber bursts. A simple learning rule was elaborated in order to link the average granule cell depolarization to LTP and LTD. Briefly, LTP was generated for membrane potentials >-40 mV and LTD for membrane potentials <-40 mV. The result was t...

متن کامل

Activation of presynaptic cAMP-dependent protein kinase is required for induction of cerebellar long-term potentiation.

Cerebellar long-term potentiation (LTP) is a persistent increase in the strength of the granule cell-Purkinje neuron synapse that occurs after brief stimulation of granule cell axons at 2-8 Hz. Previous work has indicated that cerebellar LTP induction requires presynaptic Ca influx, stimulation of Ca-sensitive adenylyl cyclase, and activation of PKA. The evidence implicating PKA has come from b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011